Membranspeicher

RD 50150/01.2013 1/24

Ersetzt: 11/07

Typ HAD

Geräteserie 1X und 2X Nennvolumen 0,075 bis 3,5 Liter Maximaler Betriebsdruck 350 bar

Inhaltsübersicht

Inhalt Seite Merkmale 2 Bestellangaben 3 Betriebsanleitungen und Konformitätserklärungen 3 Funktion, Schnitt, Symbol 4 Technische Daten Anwendung, Wirkungsweise 5 bis 10 Berechnung Geräteabmessungen 70 bis 250 bar Geräteabmessungen Vorzugstypen 70 bis 250 bar 12 bis 14 15, 16 Geräteabmessungen USA-Vorzugstypen Geräteabmessungen Vorzugstypen 350 bar 17, 18 Zubehör 19 bis 21 Sicherheitshinweise für Hydrospeicher 22 22, 23 Gesetzliche Bestimmungen Sicherheitseinrichtungen 23 Inbetriebnahme, Wartung 23, 24

Merkmale

- Hydrospeicher nach Druckgeräterichtlinie 97/23/EG
- Membranwerkstoff für unterschiedliche Anwendungen
- o Hinwei
 - Die Richtlinie über Druckgeräte 97/23/EG des europäischen Parlaments und des Rates vom 29. Mai 1997 zur Angleichung
- der Rechtsvorschriften der Mitgliedsstaaten ist seit dem
- 29. November 1999 in Kraft. Ab dem 29. Mai 2002 hat das
 - Inverkehrbringen von Hydrospeichern ausschließlich nach dieser Richtlinie zu erfolgen.

Achtung bei Bestellungen mit Lieferung per Luftfracht

Bosch Rexroth ist aufgrund von gesetzlichen Bestimmungen dazu verpflichtet, bei Hydrospeichern, die per Luftfracht verschickt werden, vor dem Transport den Vorspanndruck abzulassen. In diesem Fall ist der Kunde für die Wiederbefüllung verantwortlich.

Ist die Befüllung beim Kunden nicht möglich, wenden Sie sich bitte an den lokalen Bosch Rexroth Service.

Membranspeicher bis einschließlich 1 Liter

Die CE-Richtlinie ist seit November 2001 umgesetzt. Die Speicher dürfen jedoch kein CE-Zeichen tragen. Pro Versandlos wird eine Benutzeranweisung Nr. 1 539 929 064 beigelegt.

Membranspeicher größer 1 Liter

Die CE-Richtlinie ist seit November 2001 umgesetzt. Die Speicher müssen ein CE-Zeichen tragen. Der Versand erfolgt je Baureihe mit einer Betriebsanleitung und Konformitätserklärung. Die Konformitätserklärung beinhaltet die technischen Daten der Speicher. Die Unterlagen werden pro Versandlos beigelegt.

Bestellangaben

Vorspanndruck 97/23/EG 0 bis 250 bar 2.B. 10 bar = 10 Anschlussgröße für Druckflüssigkeit 1) Oberfläche der Anschlussseite M14x1,5 = Z04 M18x1,5 = Z08 M22x1,5 = Z08 G 1/4 = G02 G 3/8 = G03 G 1/2 = G04 G 3/4 = G05 G 1 = G06 3/4 - 16 UNF = U04 1 1/16 - 12 UNF = U06 3/8 NPTF = F02 1/2 - 14 NPTF = F08 Befestigungsart (Ölanschlussform) 1 = Standardausführung für 0 538 103 012			T		1	
O,075						9
O16 250 1X BA O35 210 1X BA O35 210 1X BA O35 250 D35						
0,35						_
100						_
0,5 250 2X BA			ļ			
100		0,5			BA	
1,0 200 1X BA						
1,0		0,7	180	1X	ВА	
1,0						
1.4 250 1X CE						
1,4		1,0		_	ВА	
350		1.1				
100		1,4			_	
2,0 350 1X CE						
350 2X 70 1X CE 350 350 1X CE 350 35		2,0			CE	
2,8 350 1X CE			350	2X	7	
Seräteserie						
Serâteserie		2,8			CE	
HAD						_
HAD		3,5			CE	
HAD			<u> </u>		<u> </u>	
HAD		lr				
HAD						
Geräteserie Geräteserie 10 bis 19 = 1X Geräteserie 20 bis 29 = 2X (unveränderte Einbau- und Anschlussmaße) Vorspanndruck 0 bis 250 bar z.B. 10 bar = 10 Anschlussgröße für Druckflüssigkeit ¹) M14x1,5 = Z06 M22x1,5 = Z08 G 1/4 = G02 G 3/8 = G03 G 1/2 = G04 G 3/4 = G05 G 1 = G06 3/4 - 16 UNF = U06 3/8 NPTF = F02 1 /2 - 14 NPTF = F08 Befestigungsart (Ölanschlussform) Einschraubzapfen M45x1,5 mit Innengewinde Meinschraubzapfen M45x1,5 mit Innengewinde Meinschraubzapfen M45x1,5 mit Innengewinde Meinschraubzapfen M45x1,5 mit Innengewinde Meitre Angaben im Klartext z.B. Sonderausführunge Zertifizierung (Abnahme) CE = Abnahmen ach 97/23/EG BA = Benutzungsanweisung Oberfläche der Anschlussseite 1 = Stahl 2 = Stahl verzinkt Oberfläche der Behälterinnenseite 1 = Stahl 2 = Stahl verzinkt N = Blasenwerkstoff N = E E E E E E E E E E E E E E E E E E	HAD) <u> </u>	<u> </u>		1	
Seräteserie 10 bis 19		ļ l			<u> </u>	
Geräteserie 20 bis 29 = 2X (unveränderte Einbau- und Anschlussmaße) Vorspanndruck Obis 250 bar z.B. 10 bar = 10 Anschlussgröße für Druckflüssigkeit 1) M14x1,5 = Z04 M18x1,5 = Z08 M22x1,5 = Z08 G 1/4 = G02 G 3/8 = G03 G 1/2 = G04 G 3/4 = G05 G 1/2 = G04 G 3/4 = G05 G 1 = G06 3/4 - 16 UNF = U04 1 1/16 - 12 UNF = U06 3/8 NPTF = F02 1/2 - 14 NPTF = F08 Befestigungsart (Ölanschlussform) Einschraubbohrung Einschraubbohrung Einschraubbohrung Einschraubzapfen M45x1,5 mit Innengewinde Einschraubzapfen M45x1,5 mit Innengewinde Zertifizierung (Abnahme) CE = Abnahme nach 97/23/EG BA = Benutzungsanweisung Oberfläche der Anschlussseite 1 = Stahl 2 = Stahl verzinkt Oberfläche der Behälterinnenseite 1 = Stahl 2 = Stahl verzinkt N = NBR E = ECO I = IIIR F = Standardausführung für 0 538 103 011 I = Standardausführung für 0 538 103 01			.			
Comparison of the Comparison						
CE = Abnahme nach 97/23/EG			² ^			
Section 2	Anschlussmaße)					_
0 bis 250 bar z.B. 10 bar = 10 Anschlussgröße für Druckflüssigkeit 1) M14x1,5 = Z04 M18x1,5 = Z08 M22x1,5 = Z08 G 1/4 = G02 G 3/8 = G03 G 1/2 = G04 G 3/4 = G05 G 1 = G06 3/4 - 16 UNF = U04 1 1/16 - 12 UNF = U06 3/8 NPTF = F02 1 1/2 - 14 NPTF = F08 Befestigungsart (Ölanschlussform) Einschraubbohrung mit Außensechskant = C Einschraubzapfen mit Innengewinde = E Einschraubzapfen mit Innengewinde = E Einschraubzapfen M45x1,5 mit Innengewinde BA = Benutzungsanweisung Oberfläche der Anschlussseite 1 = Stahl 2 = Stahl verzinkt Oberfläche der Behälterinnenseite 1 = Stahl 2 = Stahl verzinkt Nertinenenseite 1 = Stahl 2 = Stahl verzinkt Nertineneneite 1 = Stahl 2 = Stahl	Vorsnanndruck					
Z.B. 10 bar = 10 Anschlussgröße für Druckflüssigkeit 1) M14x1,5 = Z06 M18x1,5 = Z08 M22x1,5 = Z08 G 1/4 = G02 G 3/8 = G03 G 1/2 = G04 G 3/4 = G05 G 1 = G06 3/4 - 16 UNF = U06 1 1/16 - 12 UNF = F02 1/2 - 14 NPTF = F02 Inschraubbohrung mit Außensechskant Einschraubbzapfen mit Innengewinde Z.B. 10 bar = 10 Oberfläche der Anschlussseite 1 = Stahl 2 = Stahl verzinkt Oberfläche der Behälterinnenseite 1 = Stahl verzinkt Oberfläche der Anschlusseite 1 = Stahl verzinkt Oberfläche der Anschlusseite 1 = Stahl verzinkt Oberfläche der Anschlusseite 1 = Stahl verzinkt I = Stahl verzi	•					BA = Benutzungsanweisung
Anschlussgröße für Druckflüssigkeit 1) M14x1,5	z.B. 10 bar		= 10			Oberfläche der Anschlussseite
M14x1,5 = Z04 M18x1,5 = Z06 M22x1,5 = Z08 G 1/4 = G02 G 3/8 = G03 G 1/2 = G04 G 3/4 = G05 G 1 = G06 3/4 - 16 UNF = U04 1 1/16 - 12 UNF = F02 1/2 - 14 NPTF = F08 Befestigungsart (Ölanschlussform) Einschraubbohrung mit Außensechskant = C Einschraubzapfen mit Innengewinde = E Einschraubzapfen M45x1,5 mit Innengewinde = E Einschraubzapfen M45x1,5 mit Innengewinde = E5 C	Anschlussgröße für Druckt	flüssiakeit ¹)			1 = Stahl
M18x1,5 = Z06 M22x1,5 = Z08 G 1/4 = G02 G 3/8 = G03 G 1/2 = G04 G 3/4 = G05 G 1 = G06 3/4 - 16 UNF = U04 1 1/16 - 12 UNF = F02 1/2 - 14 NPTF = F08 Befestigungsart (Ölanschlussform) Einschraubbohrung mit Außensechskant Einschraubbohrung mit Außensechskant Einschraubzapfen mit Innengewinde = E Einschraubzapfen M45x1,5 mit Innengewinde M18x1,5 = Z08 G 28 Behälterinnenseite 1 = Stahl 2 = Stahl verzinkt 2 = Stahl verzinkt 3 = Stahl 2 = Stahl verzinkt 3 = Stahl 3 = S	_					2 = Stahl verzinkt
M22x1,5 = Z08 G 1/4 = G02 Stahl verzinkt Z =						Oberfläche der Behälterinnenseite
G 1/4 G 3/8 G 1/2 G 3/4 G 3/4 G 3/4 G 3/4 G 3/4 G 1 G 1 G 3/4 G 3/4 G 1 G 1 G 3/4 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1						1 = Stahl
G 1/2 G 3/4 G 3/4 G 3/4 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1	G 1/4					2 = Stahl verzinkt
G 3/4 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1	G 3/8		= G03			Behälterwerkstoff
G 1 3/4 - 16 UNF 3/4 - 16 UNF 1/16 - 12 UNF 3/8 NPTF 1/2 - 14 NPTF Einschraubbohrung Einschraubbohrung mit Außensechskant Einschraubzapfen mit Innengewinde Einschraubzapfen Einschraubzapfen M45x1,5 mit Innengewinde Einschraubzapfen M45x1,5 mit Innengewinde Einschraubzapfen M45x1,5 mit Innengewinde Einschraubzapfen M45x1,5 mit Innengewinde S N = NBR E = EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	G 1/2		= G04		1 =	Stahl
G 1 3/4 - 16 UNF 3/8 NPTF 1/2 - 14 NPTF Befestigungsart (Ölanschlussform) Einschraubbohrung Einschraubbohrung mit Außensechskant Einschraubzapfen mit Innengewinde Einschraubzapfen M45x1,5 mit Innengewinde Einschraubzapfen M45x1,5 mit Innengewinde S N =	G 3/4		= G05			Blasenwerkstoff
1 1/16 – 12 UNF 3/8 NPTF = F02 1/2 – 14 NPTF = F08 Befestigungsart (Ölanschlussform) Einschraubbohrung Einschraubbohrung mit Außensechskant Einschraubzapfen mit Innengewinde Einschraubzapfen Einschraubzapfen M45x1,5 mit Innengewinde Einschraubzapfen M45x1,5 mit Innengewinde = U06 = F02 = F08 IIR F = IIR F = FKM Gasanschlussform 1 = Standardausführung für 0 538 103 012 2 = Gasventil für 0 538 103 011 4 = nicht nachfüllbar, gasseitig verschweißt 1 weitere Anschlussgrößen auf Anfrage 1 weitere Anschlussgrößen auf Anfrage	G 1		= G06		N =	
F = FKM Gasanschlussform FKM FKM Gasanschlussform F = FKM F = FKM Gasanschlussform F	3/4 – 16 UNF		= U04		E=	ECO
1/2 – 14 NPTF= F08Befestigungsart (Ölanschlussform)Einschraubbohrung= AEinschraubbohrung mit Außensechskant= CEinschraubzapfen mit Innengewinde= EEinschraubzapfen= FEinschraubzapfen M45x1,5 mit Innengewinde= E5	1 1/16 – 12 UNF		= U06			
Befestigungsart (Ölanschlussform) Einschraubbohrung Einschraubbohrung mit Außensechskant Einschraubzapfen mit Innengewinde Einschraubzapfen Einschraubzapfen Einschraubzapfen M45x1,5 mit Innengewinde Einschraubzapfen M45x1,5 mit Innengewinde 1 = Standardausführung für 0 538 103 012 2 = Gasventil für 0 538 103 011 4 = nicht nachfüllbar, gasseitig verschweißt 1					F=	FKM
Einschraubbohrung Einschraubbohrung mit Außensechskant Einschraubzapfen mit Innengewinde Einschraubzapfen Einschraubzapfen M45x1,5 mit Innengewinde	1/2 – 14 NPTF		= F08			
Einschraubzahrung mit Außensechskant Einschraubzapfen mit Innengewinde Einschraubzapfen Einschraubzapfen Einschraubzapfen M45x1,5 mit Innengewinde		ussform)				
Einschraubzapfen mit Innengewinde = E Einschraubzapfen M45x1,5 mit Innengewinde = E5 Einschraubzapfen M45x1,5 mit Innengewinde = E5	Einschraubbohrung					
Einschraubzapfen = F Einschraubzapfen M45x1,5 mit Innengewinde = E5	_			·	· -	mont nacmundar, gassettig verschweibt
Einschraubzapfen M45x1,5 mit Innengewinde = E5		gewinde		1)	voitoro Anachlus	egrößen auf Anfrage
■ W				•	veilere Anschlus	ssgroben aur Annage
Sonderaustuhrungen auf Anfrage		_	vinde =	: E5 │		Vorzugstypen siehe Seite 12 his 12
	Sonderaustuhrungen aut An	trage				13.24gotypon siene delle 12 bis 10

Betriebsanleitungen und Konformitätserklärungen

	Mater	ial-Nr.
Baureihe	Betriebsanleitung	Konformitätserklärung
bis 1,0	1 539 929 064	_
1,4/140	1 539 929 065	1 539 929 071
1,4/250	1 539 929 066	1 539 929 072
1,4/350	R901067048	R901067054
2,0/100	1 539 929 067	1 539 929 073
2,0/250	1 539 929 068	1 539 929 074
2,0/350	R901067049	R901067055
2,8/70	1 539 929 069	1 539 929 075
2,8/250	1 539 929 070	1 539 929 076
2,8/350	R901067050	R901067057
3,5/250	R901165521	R901165528
3,5/350	R901067051	R901067058

Funktion, Schnitt, Symbol

Allgemein

Eine der Hauptaufgaben von Hydrospeichern ist z.B. bestimmte Volumen unter Druck stehender Flüssigkeit einer Hydroanlage aufzunehmen und diese bei Bedarf wieder an die Anlage zurückzugeben.

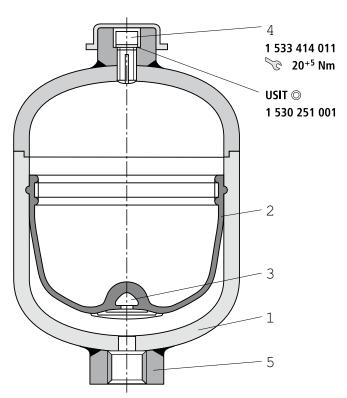
Da sich die Flüssigkeit unter Druck befindet, werden die Hydrospeicher wie Druckbehälter behandelt und müssen für den max. Betriebsüberdruck, unter Berücksichtigung der Abnahmestandards des Aufstellungslandes, ausgelegt sein.

In den meisten Hydroanlagen werden hydropneumatische (gasbeaufschlagte) Speicher mit Trennelement eingesetzt.

Nach der Ausbildung des Trennelements unterscheidet man zwischen Blasen-, Kolben- und Membranspeichern.

Hydrospeicher bestehen im wesentlichen aus einem Flüssigkeits- und einem Gasteil mit einem gasdichten Trennelement. Der Flüssigkeitsteil steht mit dem hydraulischen Kreislauf in

- 1 Behälter
- 2 Membran
- 3 Schließknopf
- 4 Verschlussschraube (Gasfüllschraube)
- 5 Flüssigkeitsanschluss


Symbol

Verbindung. Beim Ansteigen des Druckes wird das Gas komprimiert und Flüssigkeit im Hydrospeicher aufgenommen. Beim Absinken des Druckes expandiert das verdichtete Gas und verdrängt das gespeicherte Fluid in den Kreislauf.

Membranspeicher

Membranspeicher bestehen aus einem druckfesten Stahlbehälter (1), der meist kugelig bis zylindrisch ausgebildet ist. Im Innern des Speichers befindet sich als Trennglied eine Membrane (2) aus einem elastischen walkfähigen Werkstoff (Elastomer) mit dem Schließknopf (3) sowie der Verschlussschraube (4). Sie entsprechen der Richtlinie 97/23/EG.

Technische Daten (Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

allgemein											
Masse	kg	siehe Ta	ne Tabelle Seite 11, 17, 18								
Bauart		Membra	ınspeiche	er, geschv	veißt						
Einbaulage		beliebig	, vorzugs	weise Flu	iid-Ansch	lussstutz	en unten				
Befestigungsart		mit Spa	Spannschellen oder über Einschraubstutzen								
Umgebungstemperaturbereich	°C	-15 bis	+65 ¹⁾								
Leitungsanschluss		Einschra	aubgewir	ide							
hydraulisch											
Nennvolumen	1	0,075	0,16	0,35	0,5	0,7	1,0	1,4	2,0	2,8	3,5
Effektive Gasvolumen	I	0,075	0,16	0,32	0,48	0,75	1,0	1,4	1,95	2,7	3,5
Max. zul. Volumenstrom	l/min	1	0		•	40	•	•	6	0	60
Max. zulässiger Betriebsdruck p	bar			,		100			•	70	
				210	160	180		140	100		
		250	250	207	207	250	200	250	250	250	250
					250	350		350	350	350	350
Max. zul. Druck-	bar					93				50	
schwankungsbreite Δp dyn.				90	90	93		80	65		
		150	120	120	120	140	115	140	140	130	130
					100	130		130	130	130	130
Betriebsdrücke und Nutzvolume	en	siehe B	erechnun	g Seite 5	bis 10						
Druckflüssigkeit		Hydraul	iköl nach	DIN 515	24; Ande	re Flüssiç	keiten au	f Anfrage	e!		
Druckflüssigkeitstemperaturber Andere auf Anfrage	eich °C	-10 bis +80 (NBR-Membrane) ¹⁾ -35 bis +80 (ECO-Membrane) ¹⁾									
pneumatisch											
Füllgas		nur Stic	kstoff ver	wenden!							
Fülldruck p_0		siehe Vo	orzugstyp	en Seite	12 bis 18						

Verwendbare Druckflüssigkeiten

Bei der Auswahl der Speicherausführung sind hinsichtlich Druckflüssigkeit, Blasen- bzw. Membranwerkstoff und zuläs-

Druckflüssigkeiten	Temperaturbereich	Werkstoff
Mineralöle	−10 bis +80 °C −35 bis +80 °C	NBR ECO
- 2	-30 DIS +60 C	<u> </u>
HFA, HFB ²⁾	+5 bis +50 °C	NBR
HFC	−10 bis +60 °C	NBR, IIR
HFD 3)	−10 bis +60 °C	IIR
	−10 bis +80 °C	FKM
Wasser 2)	+5 bis +50 °C	NBR
Diesel, Heizöl	−10 bis +50 °C	NBR
Schweres Heizöl	−10 bis +100 °C	FKM
Normalbenzin	−10 bis +40 °C	NBR
Superbenzin	−10 bis +40 °C	FKM
Kerosin	−10 bis +40 °C	NBR

sigem Temperaturbereich die folgenden unverbindlichen Angaben zu beachten.

Gewährleistungsansprüche können aus diesen Empfehlungen nicht abgeleitet werden.

Bei anderen Druckflüssigkeiten und Temperaturen bitten wir um Rücksprache.

NBR Acrylnitril-Butadien-Kautschuk (Perbunan) FKM Fluor-Kautschuk

IIR Butyl-Kautschuk

ECO Epichlorhydrin-Kautschuk

- Maßgebend ist auch der im Behältertest genannte zulässige Temperaturbereich
- 2) evtl. Sonderausführung für Behälter und Anschlussteile
- 3) Rücksprache mit genauer Angabe der Druckflüssigkeit

Anwendung, Wirkungsweise

Anwendungen

Hydropneumatische Speicher bieten vielseitige Anwendungsmöglichkeiten:

- Energiespeicherung zur Einsparung von Pumpen-Antriebsleistung bei Anlagen mit intermittierendem Betrieb.
- Energiereserve für Notfälle, z. B. bei Versagen der Hydropumpe.
- Ausgleich von Leckverlusten.
- Stoß- und Schwingungsdämpfung bei periodischen Schwingungen.
- Volumenausgleich bei Druck- und Temperaturänderungen.
- Federungselement bei Fahrzeugen.
- Schockabsorbtion bei mechanischen Stößen.

Wirkungsweise

Flüssigkeiten sind nahezu inkompressibel und können deshalb keine Druckenergie speichern. In hydropneumatischen Rexroth-Speichern wird die Kompressibilität eines Gases zur Fluidspeicherung genutzt. Es dürfen nur neutrale Gase verwendet werden. Im Regelfall "Stickstoff" Klasse 4.0.

99,99 Vol.-% N_2 50 vpm O_2 H₂O ca. 30 vpm.

Berechnung

Drücke

Bei der Berechnung eines Speichers spielen folgende Drücke eine entsprechende Rolle:

= Gas-Vorspanndruck Bei Raumtemperatur und entleertem Flüssigkeitsraum

 $p_{0T} = Gas-Vorspanndruck$ Bei Betriebstemperatur

 p_1 = minimaler Betriebsüberdruck p₂ = maximaler Betriebsüberdruck

 $(p_m = mittlerer Betriebsdruck)$

Um eine bestmögliche Ausnutzung des Speichervolumens sowie eine hohe Lebensdauer zu erreichen, wird die Einhaltung folgender Werte empfohlen:

$$p_0, t_{\text{max}} \approx 0.9 p_1$$
 (1

Der größte hydraulische Druck soll das Vierfache des Fülldruckes nicht übersteigen, da sonst die Elastizität der Membrane zu stark beansprucht wird und zu große Kompressionsveränderung starke Gaserwärmung zur Folge hat.

Die Lebensdauer der Membrane ist umso höher, je geringer die Differenz zwischen p_1 und p_2 ist. Allerdings verringert sich dadurch auch entsprechend der Ausnutzungsgrad der maximalen Speicherkapazität.

Membranspeicher

$$\rho_2 \le 4 \cdot \rho_0 \tag{2}$$

Auf Anfrage

$$p_2 \le 8 \cdot p_0$$

Füllstück in Membranspeichern

Um erhöhte Druckverhältnisse ($\rho_0: \rho_2 > 1:4$) im Speicher zu erreichen, kann ein Füllstück auf der Gasseite des Speichers eingebracht werden.

Dadurch vermindert sich das nutzbare Gasvolumen V_1 , die Membrane wird jedoch vor unzulässiger Verformung geschützt.

Ölvolumen

Entsprechend den Drücken $p_0 \dots p_2$ ergeben sich die Gasvolumina $V_0 \dots V_2$.

Hierbei ist V_0 gleichzeitig das Nennvolumen des Speichers.

Das verfügbare Ölvolumen Δ V entspricht der Differenz der Gasvolumina V_1 und V_2 :

$$\Delta V \le V_1 - V_2 \tag{3}$$

Das innerhalb einer Druckdifferenz veränderliche Gasvolumen ist bestimmt durch folgende Gleichungen:

a) Bei isothermischer Zustandsänderung von Gasen, also dann, wenn die Veränderung des Gaspolsters so langsam erfolgt, dass genügend Zeit für den vollständigen Wärmeaustausch zwischen dem Stickstoff und seiner Umgebung zur Verfügung steht und somit die Temperatur konstant bleibt, gilt

$$\rho_0 \cdot V_0 = \rho_1 \cdot V_1 = \rho_2 \cdot V_2 \tag{4.1}$$

b) bei **adiabatischer Zustandsänderung**, also bei rascher Veränderung des Gaspolsters, wobei sich die Temperatur des Stickstoffes mit verändert, gilt

$$\rho_0 \cdot V \chi_0 = \rho_1 \cdot V \chi_1 = \rho_2 \cdot V \chi_2$$
 (4.2)

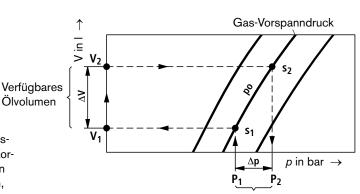
χ = Verhältnis der spezifischen Wärmen des Gases (Adiabatenexponent), für Stickstoff = 1,4

In der Praxis verlaufen die Zustandsänderungen eher nach adiabatischen Gesetzen. Häufig erfolgt die Aufladung isotherm, die Entladung adiabatisch.

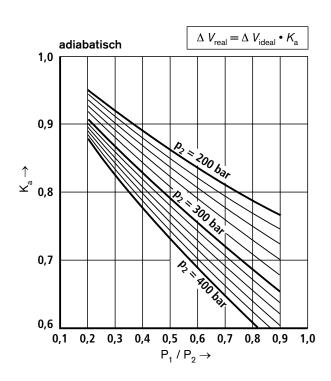
Unter Berücksichtigung der Gleichungen (1) und (2) liegt Δ V bei 50 % bis 70 % des Speicher-Nennvolumens. Als Anhaltspunkt gilt

$$V_0 = 1,5 \dots 3 \times \Delta V$$
 (5)

Berechnungsdiagramm

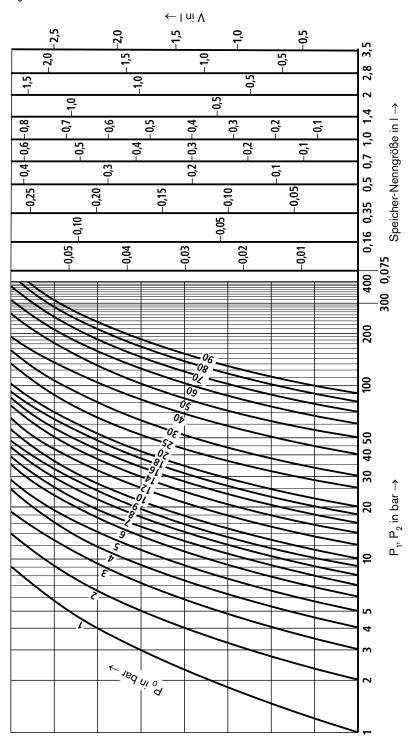

Zur grafischen Bestimmung werden die Formeln (4.1) und (4.2) in Diagramme auf Seite 7 bis 10 umgesetzt. Je nach Aufgabenstellung können das verfügbare Ölvolumen, die Speicher-Größe oder die Drücke ermittelt werden.

Korrekturfaktor K_i und K_a

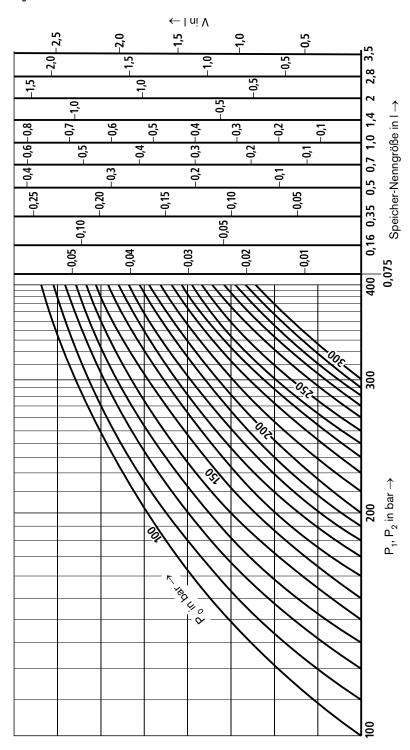

Die Gleichung (4.1) bzw. (4.2) gilt nur für ideale Gase. Im Verhalten von realen Gasen ergeben sich jedoch bei Betriebsdrücken über 200 bar merkliche Abweichungen, die durch Korrekturfaktoren berücksichtigt werden müssen. Diese sind den folgenden Diagrammen zu entnehmen. Die Korrekturfaktoren, mit denen das ideale Entnahmevolumen ΔV zu multiplizieren sind, liegen im Bereich von 0,6 ... 1.

1, 0

Anwendung der Berechnungsdiagramme



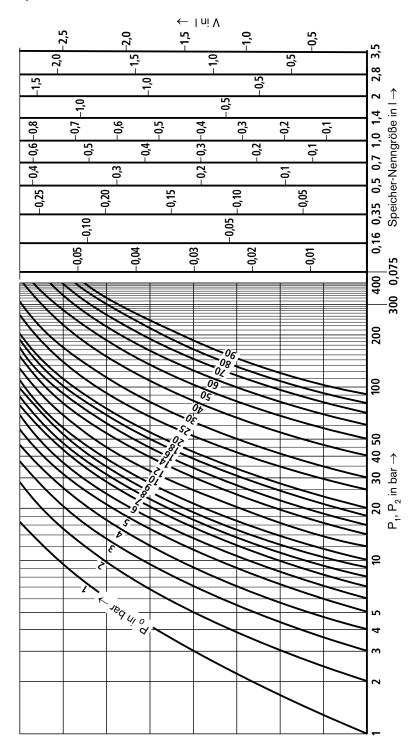
Arbeitsdruck-Bereich


Isotherme Zustandsänderungen

 $p_0 = 1$ bis 90 bar

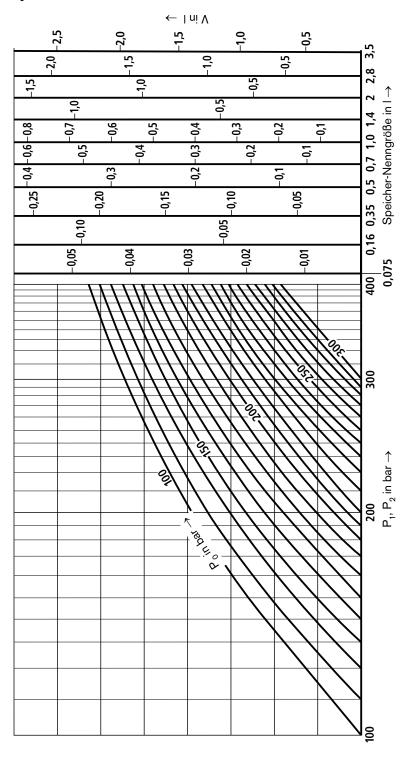
Isotherme Zustandsänderungen

 $p_0 = 100 \text{ bis } 300 \text{ bar}$

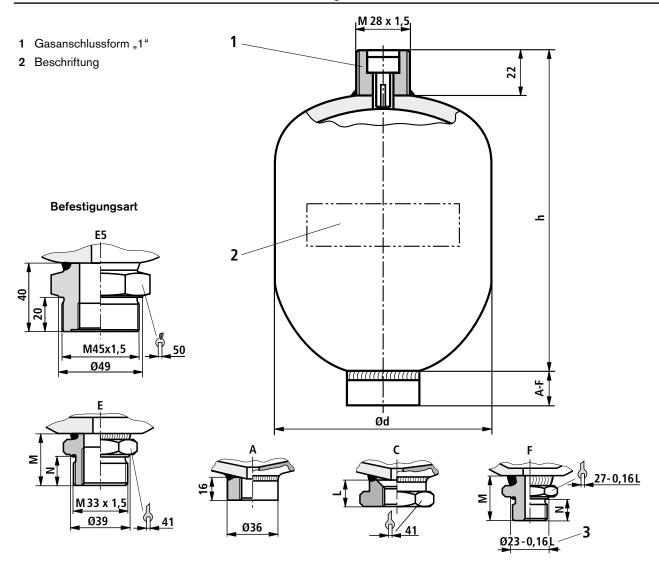


9/24

Berechnung

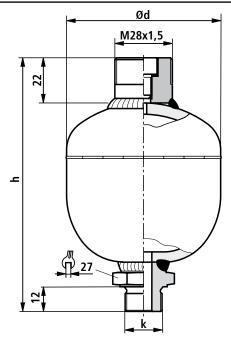

Adiabatische Zustandsänderungen

 $p_0 = 1$ bis 90 bar

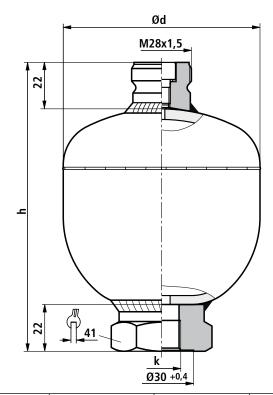


Adiabatische Zustandsänderungen

 $p_0 = 100 \text{ bis } 300 \text{ bar}$

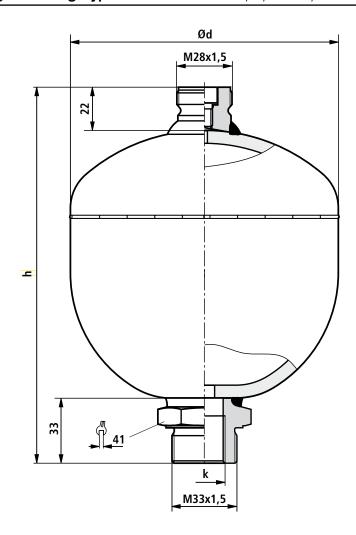


Geräteabmessungen: 70 bis 250 bar (Maßangaben in mm)

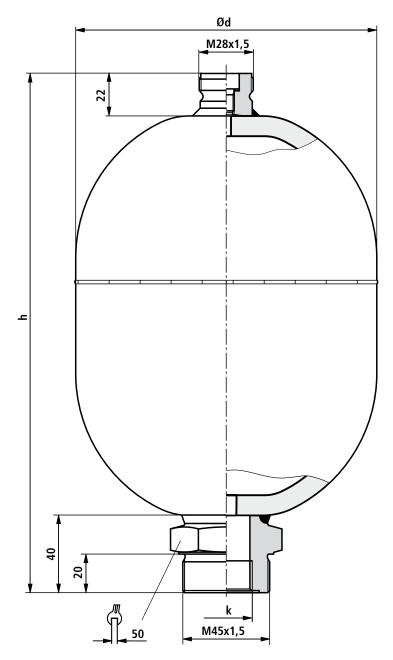


Typ/V in Liter	p _{max} in bar	Ød	h	L	М	N	Masse in kg
HAD0,075	250	64	91	20	21,5	12	0,65
HAD0,16	250	75	99,5	20	24	12	1,0
HAD0,35	210	92	114	22	33	18	1,3
LIADOF	160	103	127	22	_	_	1,6
HAD0,5	250	106	130	20	27	12	2,0
LIADO 7	180	121	144	22	33	18	2,6
HAD0,7	250	123,6	144	22	33	18	3,2
HAD1,0	200	136	158	22	33	18	3,5
LIAD14	140	147	169	22	33	18	4,9
HAD1,4	250	152	173	22	33	18	6,2
LIADOO	100	144	218	22	33	18	4,0
HAD2,0	250	155	229	22	33	18	9,5
HADO 8	70	160	247	21	33	18	5,5
HAD2,8	250	174	247	21	33	18	10,0
HAD3,5	250	174	285	21	33	18	14,0

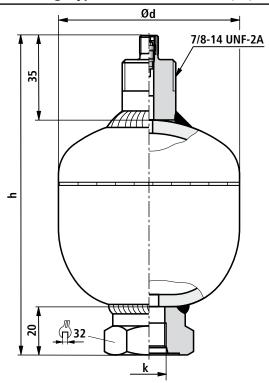
Geräteabmessungen Vorzugstypen: 160 bis 250 bar; 0,075 bis 0,5 Liter (Maßangaben in mm)



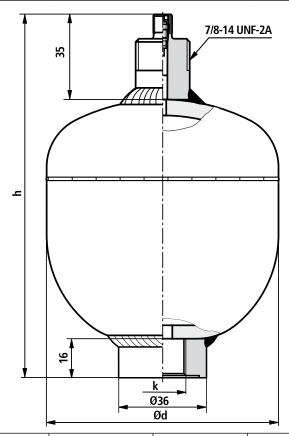
Bestellangaben / Typ	Volumen in Liter	Material-Nr.	h	Ød	k
HAD0,075-250-1X/2Z04F-1N111-BA	0,075	R901183242	112,5	65,5	M14x1,5
HAD0,16-250-1X/2Z06F-1N111-BA	0,16	R901183248	123,5	76,5	M18x1,5


Bestellangaben / Typ	Volumen in Liter	Material-Nr.	h	Ød	k
HAD0,35-210-1X/2Z06C-1N111-BA	0,35	R901183250	136	94,3	
HAD0,5-160-1X/2Z06C-1N111-BA	0,5	R901183251	149	104,8	M18x1,5
HAD0,5-250-2X/2Z06C-1N111-BA	0,5	R901183253	152	108,5	

Geräteabmessungen Vorzugstypen: 100 bis 250 bar; 0,7 bis 1,4 Liter (Maßangaben in mm)

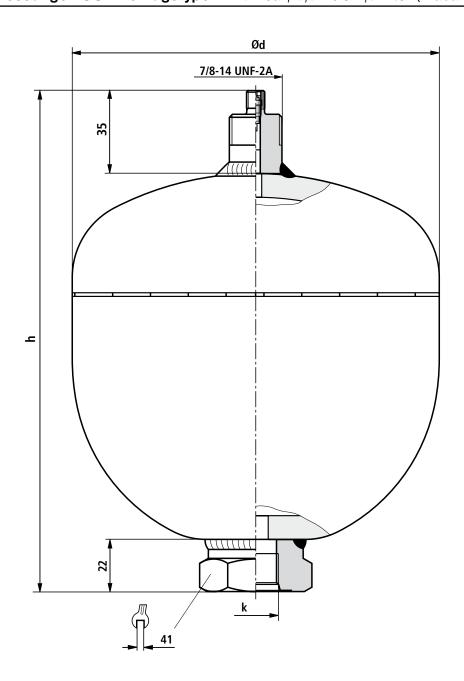

Bestellangaben / Typ	Volumen in Liter	Material-Nr.	h	Ød	k
HAD0,7-100-1X/2G04E-1N111-BA	0,7	R901164364	172	118,8	
HAD0,7-210-1X/2G04E-1N111-BA	0,7	R901164365	177	123,5	
HAD1,0-200-1X/2G04E-1N111-BA	1,0	R901164367	191	138,5	G 1/2"
HAD1,4-140-1X/2G04E-1N111-CE	1,4	R901164368	202	149,6	
HAD1,4-250-1X/2G04E-1N111-CE	1,4	R901164369	206	152	

Geräteabmessungen Vorzugstypen: 100 bis 250 bar; 2,0 bis 3,5 Liter (Maßangaben in mm)

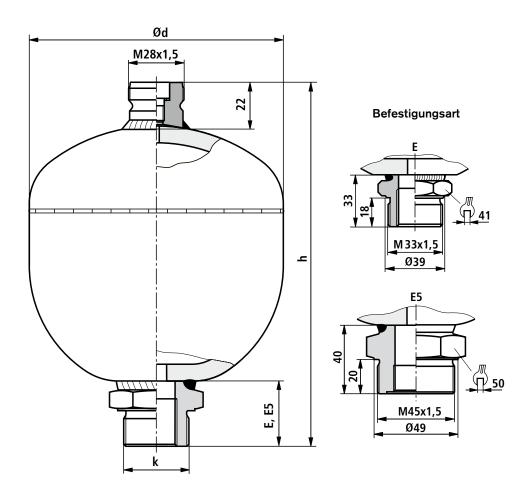


Bestellangaben / Typ	Volumen in Liter	Material-Nr.	h	Ød	k
HAD2,0-100-1X/2G05E5-1N111-CE	2,0	R901164371	258	147,2	
HAD2,0-250-1X/2G05E5-1N111-CE	2,0	R901164372	269	158,6	G 3/4"
HAD2,8-250-1X/2G05E5-1N111-CE	2,8	R901164374	286	177,5	
HAD3,5-250-1X/2G05E5-1N111-CE	3,5	R901164376	325	177,5	

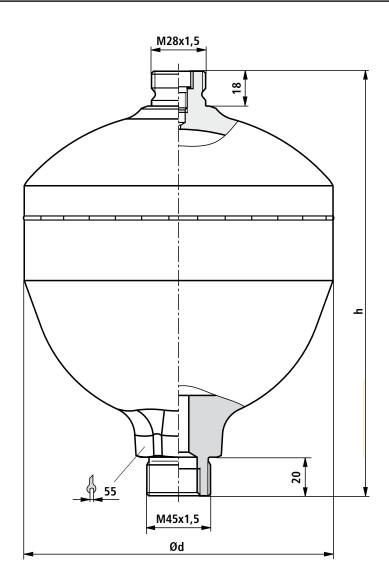
Geräteabmessungen USA-Vorzugstypen: 207 bis 250 bar; 0,075 bis 0,35 Liter (in mm)



Bestellangaben / Typ	Volumen in Liter	Material-Nr.	h	Ød	k
HAD0,075-250-1X/0U12C-2N111-USA	0,075	0531610632	125,8	65,5	0/40 40 UNE 0D
HAD0,16-250-1X/0U12C1-2N111-USA	0,16	0531600611	132,3	76,5	9/16-18 UNF-2B


Bestellangaben / Typ	Volumen in Liter	Material-Nr.	h	Ød	k
HAD0,35-207-1X/0U04A-2N111-USA	0,35	0531601572	150,5	96,5	3/4-16 UNF-2B

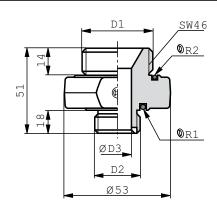
Geräteabmessungen USA-Vorzugstypen: 207 bar; 0,07 bis 2,8 Liter (Maßangaben in mm)


Bestellangaben / Typ	Volumen in Liter	Material-Nr.	h	Ød	k
HAD0,7-207-1X/0U04C-2N111-USA	0,7	0531602588	186	128,5	
HAD1,4-207-1X/0U04C-2N111-USA	1,4	0531603501	212,8	156,5	0/4 16 UNE OD
HAD2,0-207-1X/0U04C-2N111-USA	2,0	0531623500	265,8	156,5	3/4-16 UNF-2B
HAD2,8-207-1X/0U04C-2N111-USA	2,8	0531613503	282,5	175,5	

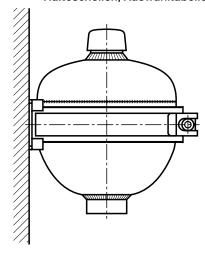
Geräteabmessungen Vorzugstypen: 350 bar; 0,7 bis 2,0 Liter (Maßangaben in mm)

Bestellangaben / Typ	Volumen Liter	Material-Nr.	Ød	h	k	Masse kg
HAD0,7-350-2X/2G04E-1N111-BA	0,7	R901164366	128,5	184	E	4,0
HAD1,4-350-2X/2G04E-1N111-CE	1,4	R901164370	156	209	E	7,0
HAD2,0-350-2X/2G05E5-1N111-CE	2,0	R901164373	156	269	E5	9,5

Geräteabmessungen Vorzugstypen: 350 bar; 2,8 und 3,5 Liter (Maßangaben in mm)


Bestellangaben / Typ	Volumen Liter	Material-Nr.	Ød	h	Masse kg
HAD2,8-350-1X/2G05E5-1N111-CE	2,8	R901164375	180	285	13,0
HAD3,5-350-1X/2G05E5-1N111-CE	3,5	R901164377	180	325	16,0

Zubehör (Maßangaben in mm)


Adapter für Blöcke NG20

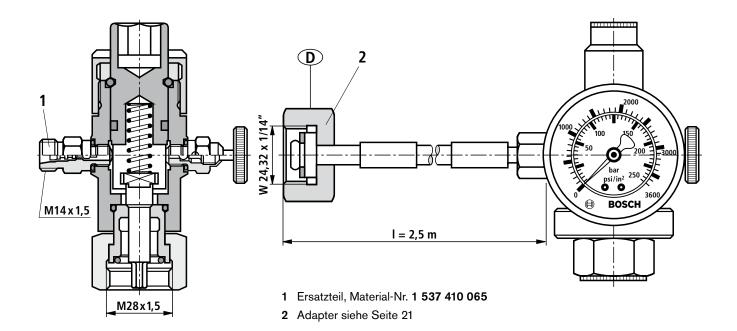
Anschluss A (Speicher)

Speicher D1	Block D2	ØD3	Material-Nr.
M 22 x 1,5		12	1 533 359 012
M 18 x 1,5	M 33 x 2	8	1 533 359 013
G 1/2 ISO 228		8	1 533 359 034

Halteschellen, Auswahltabelle

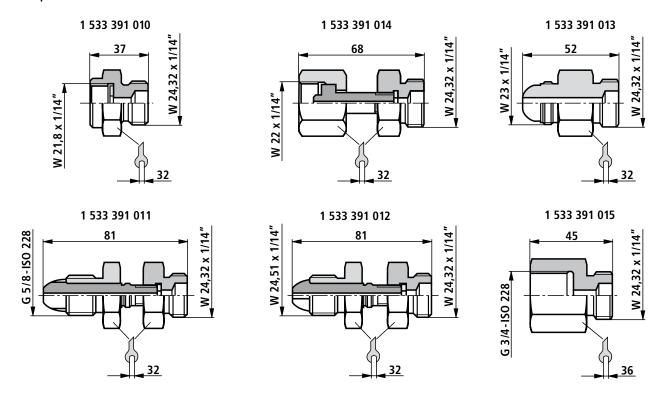
Тур	Schellentyp	Material-Nr.
HAD0,075	HY/VGBKS 62-65	1 551 316 024
HAD0,35	HY/VGBKS 92-97	1 531 316 017
HAD0,50	HY/VGBKS 101-111	1 531 316 018
HAD0,75	HY/VGBKS 119-128	1 531 316 015
HAD0,7	HY/VGBKS 128-136	R901073992
HAD1,0	HY/VGBKS 135-145	1 531 316 019
HAD1,4	HY/VGBKS 145-155	1 531 316 016
HAD2,0/100	HY/VGBKS 135-145	1 531 316 019
HAD2,0/250	HY/VGBKS 145-155	1 531 316 016
HAD2,8/70	HY/VGBKS 160-170	1 531 316 022
HAD2,8-3,5	HY/VGBKS 170-180	1 531 316 020

Füll- und Prüfvorrichtung


Messkoffer komplett	Material-Nr.		
Blase		0 538 103 011	
Membran	0 538 103 012		
Blase und Membran bestehend aus:		0 538 103 014	
Koffer		R901070141	
Füll- und	Blase	0 538 103 005	
Prüfventil	Membran	0 538 103 006	
Manometer 0 bis 250 bar		1 537 231 001	
Schlauch I = 2,5 m mit Übergangsstutzen Form ①		1 530 712 005	

Ergänzungsteile separat zu bestellen	Material-Nr.
Manometer 0 bis 25 bar	R900033955
Manometer 0 bis 60 bar	1 537 231 002
Manometer 0 bis 400 bar	1 537 231 005
Übergangsstutzen Form ©	1 533 391 010
Form ®	1 533 391 011
Form ®	1 533 391 012
Form ®	1 533 391 013
Form @	1 533 391 014
Form (S)	1 533 391 015
Schlauch I = 5 m mit Übergangsstutzen Form ①	1 530 712 006

Zubehör (Maßangaben in mm)


Abmessungen Füll- und Prüfventil

1 Ventilkörper mit Rückschlagventil, Ablassventil, Manometeranschluss und Gasschlauchanschluss.

Zubehör (Maßangaben in mm)

Adapter für Stickstoffflasche zur Überwurfmutter

Land	1 533 391 011	1 533 391 010	1 533 391 012	1 533 391 014	1 533 391 013	1 533 391 015
Brasilien	х					
Bulgarien	х					
Frankreich		х				
Griechenland	х					
Großbritanien	х					
Indien	х					
Japan				х		
Kanada			х			
Korea Nord					х	
Korea Süd					x	
Malaysia	x					
Rumänien		x				
Russland						х
Spanien	x					
Saudi Arabien		х				
Singapur	х					
Türkei	х					
USA			х			

Sicherheitshinweise für Hydrospeicher

Für Hydrospeicher sind die am Aufstellungsort geltenden Vorschriften vor Inbetriebnahme und während des Betriebes zu beachten.

Für die Einhaltung der bestehenden Vorschriften ist ausschließlich der Betreiber verantwortlich.

Allgemeine Hinweise für Hydrospeicher in Hydraulikanlagen gibt EN 982.

Mitgelieferte Dokumente sind sorgfältig aufzubewahren, sie werden bei wiederkehrenden Prüfungen vom Sachverständigen benötigt.

⚠ Warnung

Am Speicherbehälter nicht schweißen und löten sowie keine mechanische Arbeiten vornehmen!

- Explosionsgefahr bei Schweiß- und Lötarbeiten!
- Berstgefahr und Verlust der Betriebserlaubnis bei mechanischer Bearbeitung!

Hydrospeicher nicht mit Sauerstoff oder Luft aufladen. Explosionsgefahr!

Vor dem Arbeiten an Hydraulikanlagen System drucklos schalten und gegen Wiedereinschalten sichern!

Bei unsachgemäßem Montieren können schwere Unfälle verursacht werden!

Die Inbetriebnahme darf ausschließlich durch qualifiziertes Personal durchgeführt werden.

Gesetzliche Bestimmungen

Hydrospeicher sind Druckbehälter und unterliegen den am Aufstellungsort gültigen nationalen Vorschriften bzw. Verordnungen.

In Deutschland gilt die Betriebssicherheitsverordnung (BetrSichV).

Besondere Regeln sind im Schiffsbau, Flugzeugbau, Bergbau usw. zu beachten.

Die Auslegung, Herstellung und Prüfung erfolgt nach den Merkblättern nach AD 2000. Aufstellung, Ausrüstung und der Betrieb werden durch die "Technischen Regeln Druckbehälter" (TRB) geregelt.

Behälterklassen und Prüfungen in Deutschland

Nach dieser deutschen Verordnung werden Druckbehälter entsprechend ihrem Inhalt in \boldsymbol{L} dem zulässigen Betriebsüberdruck in bar, und dem Druckinhaltsprodukt $p \times L$ in Kategorien eingeteilt. Je nach Kategorie sind Prüfungen vorgeschrieben.

Eine Übersicht gibt nachfolgende Tabelle:

Behälterklasse	Erstmalige Prüfung beim Hersteller	Abnahmeprüfung beim Betreiber	Wiederkehrende Prüfung Innere Druck Äußere		
II $p > 25 \text{ bar}; p \cdot L \le 200$	0	0	0	0	0
III $p > 1 \text{ bar}; p \cdot L > 200 \le 1000$	Х	Х	0	0	0
IV $p > 1 \text{ bar}; p \cdot L > 1000$	Х	Х	X 5 ¹⁾ / 10 ²⁾	X 10 ¹⁾	X 2 1)

¹⁾ Jahre

X durch Sachverständigen

O durch Sachkundigen

Alle Behälterklassen sind mit einem Druckbegrenzungsventil gemäß Richtlinie 97/23/EG abzusichern.

²⁾ Jahre bei nichtkorrodierenden Flüssigkeiten

Gesetzliche Bestimmungen

Abnahmegesellschaften

Erstmalige Prüfungen, Zulassungen und Abnahmen erfolgen durch Sachverständige. Diese werden in den einzelnen Ländern durch folgende Abnahmegesellschaften gestellt:

TÜV

GB LRIS

D.R.I.R.E.

B APRAGAZ

WA LRIS

NL Stoomwezen

① ISPESEL

@ UDT

⊕ SVDB

Schiffsbau und Offshore LRS = Lloyd's Register DNV = Det Norske Veritas GL = German Lloyd

ABS = American Bureau of Shipping

Diese Stellen sind in Brüssel bei der EU registriert und führen als "Benannte Stelle" die nach der Druckgeräterichtlinie geforderten Prüfungen durch.

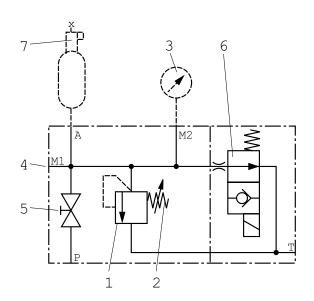
Darüber hinaus gibt es noch Klassifikationsgesellschaften (Germanische Lloyd, Lloyd's Register, Det Norske Veritas usw.) für Schiffe und Offshore.

Die Lieferung der CE-Speicher erfolgt mit einer Konformitätserklärung und einer Betriebsanleitung.

Sachkundige

Diese werden vom Betrieb des Anwenders ernannt und haben sich entsprechend zu qualifizieren.

In Deutschland werden entsprechende Lehrgänge von Abnahmegesellschaften angeboten.


Sicherheitseinrichtungen

Ausrüstung, Aufstellung und Betrieb von Hydrospeichern werden in der Bundesrepublik Deutschland durch die "Technischen Regeln Druckbehälter" (TRB) geregelt. Diese fordern folgende Sicherheitsausrüstung:

- 1 Einrichtungen gegen Drucküberschreitung (baumustergeprüft)
- 2 Entlastungseinrichtung
- 3 Druckmesseinrichtung
- 4 Prüfmanometeranschluss
- 5 Absperreinrichtung

Option:

- 6 Elektromagnetisch betätigte Entlastungseinrichtung
- 7 Sicherheitseinrichtung gegen Temperaturüberschreitung Diese Sicherheitseinrichtung ist in einem kompakten Bosch Rexroth Sicherheits- und Absperrblock zusammengefasst.

Inbetriebnahme, Wartung

Hinweise zur Inbetriebnahme

Fülldruck

Membranspeicher werden im Regelfall in betriebsbereitem Zustand geliefert. Der Fülldruck (p_0) ist auf dem Speichergehäuse eingeprägt.

Hydrospeicher dürfen nur mit Stickstoff Klasse 4.0 reinst gefüllt werden, N2 99,99 Vol.-%.

Zulässige Betriebstemperatur

Bosch Rexroth Hydrospeicher sind in "Standardausführung" für Betriebstemperaturen von −10 bis +80 °C geeignet. Bei abweichenden Temperaturen bitte Rücksprache.

Einbaulage

Die Einbaulage für Membranspeichern ist beliebig. Für Prüf- und Füllgerät ist über dem Gasventil ein Einbauraum von 200 mm frei zu halten.

Befestigung

Der Speicher ist so zu befestigen, dass etwaige Kräfte, hervorgerufen zum Beispiel durch anwendungsbedingte Vibrationen oder Beschleunigungen, sicher aufgenommen werden können. Bei mehreren Befestigungspunkten sind Verspannungen durch betriebsbedingte, elastische Verformungen oder Temperaturdehnungen in der Struktur zu vermeiden.

Bosch Rexroth bietet entsprechende Halteschellen an (siehe Seite 19).

Inbetriebnahme, Wartung

Füllen des Speichers

Zum Füllen des Speichers ist die Bosch Rexroth Füll- und Prüfvorrichtung zu verwenden (siehe Seite 19, 20).

Im Einzelnen sind hierzu die Angaben der Bedienungsanleitung 1 539 929 010 zu beachten.

Hinweis

Der Vorfülldruck ändert sich mit der Gastemperatur. Nach dem Füllen oder Ablassen von Stickstoff ist mit der Überprüfung des Gasdruckes zu warten, bis ein Temperaturausgleich erfolgt ist.

Wartung

Allgemeines

Bosch Rexroth Speicher sind nach der Füllung mit Gas weitgehend wartungsfrei.

Damit ein störungsfreies Arbeiten und eine lange Lebensdauer gewährleistet sind, müssen folgende Wartungsarbeiten durchgeführt werden:

- Gasvorspanndruck prüfen
- Sicherheitseinrichtungen, Armaturen prüfen
- Leitungsanschlüsse prüfen
- Speicherbefestigung pr
 üfen.

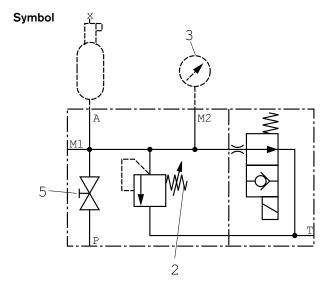
Prüfen des Gasfülldruckes

Prüfintervalle

Nach Inbetriebnahme des Speichers ist der Fülldruck in der ersten Woche mindestens 1-mal zu prüfen. Wird kein Gasverlust festgestellt, ist die zweite Prüfung nach 3 Monaten durchzuführen. Ist erneut keine Druckänderung eingetreten, kann auf jährliche Überprüfung übergegangen werden.

Messen auf der Flüssigkeitsseite

Manometer mit Speicher über Leitung verbinden. Alternativ kann das Manometer direkt am Entlüftungsanschluss angeschlossen werden.


Vorgehensweise:

- Druckflüssigkeit in den Speicher füllen.
- Absperreinrichtung (5) schließen.
- Durch Öffnen des Entlastungsventils (2) Druckflüssigkeit langsam abfließen lassen (Temperaturausgleich).
- Während des Entleerungsvorganges Manometer (3) beobachten. Sobald der Fülldruck im Speicher erreicht ist, fällt der Zeiger schlagartig auf null ab.

Werden Abweichungen gemessen, ist zunächst zu prüfen ob:

- Rohrleitungen, Armaturen dicht sind.
- Ob diese auf unterschiedliche Umgebungs- oder Gastemperaturen zurückzuführen sind.

Erst wenn hier kein Fehler festgestellt werden kann, ist eine Überprüfung des Speichers erforderlich.

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 93 52 / 18-0
Telefax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de

© Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.